ACTIVE

CATEGORY Type: PRINTING PROCESS

BACT Category: MINOR SOURCE BACT

BACT Determination Number: 325 BACT Determination Date: 3/9/2023

Equipment Information

Permit Number: N/A -- Generic BACT Determination

Equipment Description: LITHOGRAPHIC OFFSET HEATSET

Unit Size/Rating/Capacity: ALL

Equipment Location:

BACT Determination Information

District Contact: Joe Carle Phone No.: (279) 207-1121 email: jcarle@airquality.org					
ROCs	Standard:	APC device with 98% efficiency			
	Technology Description:	Dryer waste gas vented to a VOC control device with 98% control efficiency or an outlet VOC concentration of 10 ppmv and compliance with material limits in SMAQMD Rule 450 Sections 301 & 302			
	Basis:	Achieved in Practice			
NOx	Standard:	20 ppmv @ 3% O2 or 0.036 lb/MMBtu			
	Technology Description:	Dryer combustion emissions ≤ 20 ppmv @ 3% O2 or ≤ 0.036 lb/MMBtu			
	Basis:	Achieved in Practice			
SOx	Standard:	No standard			
	Technology Description:				
	Basis:				
PM10	Standard:	Vent to VOC control device			
	Technology Description:	Vent dryer waste gas to a VOC contol device			
	Basis:	Achieved in Practice			
PM2.5	Standard:	No standard			
	Technology Description:				
	Basis:				
СО	Standard:	1000 ppmv @ 3% O2			
Technology Description: Dryer combustion emissions ≤ 1000 ppmv @ 3% O2					
	Basis:	Achieved in Practice			
LEAD	Standard:	No standard			
	Technology Description:				
	Basis:				

Comments: T-BACT: Capture and vent to VOC control device with at least 98.5% destruction/recovery device efficiency

Printed: 3/15/2023

ACTIVE

CATEGORY Type: PRINTING PROCESS

BACT Category: MINOR SOURCE

BACT Determination Number: 326 BACT Determination Date: 3/9/2023

Equipment Information

Permit Number: N/A -- Generic BACT Determination

Equipment Description: LITHOGRAPHIC OFFSET NON-HEATSET

Unit Size/Rating/Capacity: ALL

Equipment Location:

BACT Determination Information

District Contact: Joe Carle Phone No.: (279) 207-1121 email: jcarle@airquality.org Low VOC materials (APC device if emissions ≥ 7806 lb/yr) Standard: **ROCs** Compliance with the material limits in SMAQMD Rule 450 Sections 301 & 302. If the total Technology uncontrolled VOC emissions from the unit are ≥ 7806 lbs/yr, a VOC control system must be installed Description: with at least 98.5% overall system efficiency (capture and destruction). Achieved in Practice Basis: No standard Standard: **NOx** Technology Description: Basis: No standard Standard: SOx Technology Description: Basis: No standard Standard: **PM10** Technology Description: Basis: No standard Standard: **PM2.5** Technology Description: Basis: No standard Standard: CO Technology Description: Basis: No standard Standard: **LEAD** Technology Description: Basis:

Comments: T-BACT: Capture and vent to a VOC control device with at least 98.5% destruction/recovery device efficiency.

Printed: 3/15/2023

BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NOS.:	325 & 326
	DATE:	03/08/23
	ENGINEER:	Joe Carle
Category/General Equip Description:	Printing Process	
Equipment Specific Description:	Lithographic Offset Printing P Non-Heatset	resses: Heatset and
Equipment Size/Rating:	All	
Previous BACT Det No :	250 – Lithographic Offset Hea	

These determinations focus on lithographic offset printing presses. Offset lithography operates on the repulsion of oil and water. The image is put on thin metal plates which are dampened by a water solution (fountain solution) and ink by rollers on the press. The oil-based inks adhere to the image area and the water solution to the non-image area. The inked area is transferred to a rubber cylinder or "blanket" and then onto paper as it passes around the blanket.

Determination 325 will be for presses that use a heatset process in which the inks on the paper are dried by evaporation in a dryer after the printing unit. Typically, heatset presses are used for very high detail images, for example what one might see in a high quality, glossy finish magazine.

Determination 326 will be for presses that use a non-heatset process. There are two main categories of non-heatset lithographic offset presses. The first category, often called a coldset process, uses standard oil-based inks where the ink will cure through absorption into the underlying material. In this process the VOCs from the ink have a 95% retention on the print material, whereas VOCs from heatset inks have only a 20% retention factor. The second category makes use of specially blended water-based inks that cure through the use of energy like LED light, ultraviolet light (UV), or electron beams (EB). This process uses specialized presses that have the energy curing technology built into the press.

This determination will also include Best Available Control Technology for Toxics (T-BACT) for the hazardous air pollutants (HAP) that could potentially be ingredients in the inks, coatings, solutions, or solvents used in the printing process.

BACT/T-BACT ANALYSIS

A. ACHIEVED IN PRACTICE (Rule 202, §205.1a):

The following control technologies are currently employed as BACT for lithographic offset printing presses by the following agencies and air pollution control districts:

US EPA

BACT:

Source: EPA RACT/BACT/LAER Clearinghouse (See Attachment A)

Below shows the most stringent VOC content standards and the VOC control standards for both heatset and non-heatset lithographic offset printing presses that were found.

RBLC# IN-0193 (11/13/13)

Press Type: Heatset Web Offset Lithography

Control Device Efficiency: 98% VOC destruction or 10 ppmv outlet concentration **Material VOC Content Limits:** As recommended by EPA CTG for Offset Lithographic

Printing and Letterpress Printing

All applicable BACT determinations for heatset lithographic offset presses found in the EPA Clearinghouse were from the Indiana Department of Environmental Management. Most determinations required a control device with 98% VOC destruction efficiency and then required limits equivalent to that which is recommended by the EPA's Control Techniques Guidelines for Offset Lithographic Printing and Letterpress Printing.

RBLC# LA-0336 (11/15/18)

Press Type: Non-Heatset Offset Lithography Material VOC Content Limits: Use of water-based UV/EB inks

Fountain solution ≤ 5% VOC by weight

Washes ≤ 10 mm Hg at 20°C or total VOC ≤ 70% by

weight

The BACT determination above was the only determination found for a lithographic offset non-heatset press. The standards mimic the EPA CTG for Offset Lithographic Printing and Letterpress Printing for a press that uses UV or EB cured inks.

RULE REQUIREMENTS:

Although there are no EPA regulations that apply to this source category the EPA has Control Technique Guidelines (CTG) for lithographic printing and the recommended control options will be summarized below.

<u>Control Techniques Guidelines for Offset Lithographic Printing and Letterpress Printing</u> (September 2006)

For heatset web lithographic presses EPA recommends a VOC control device with 95% control efficiency. The CTG does not recommend a control device when inlet emissions are less than 25 tons per year of VOC or for presses that are sheet fed or coldset.

The CTG does not include VOC content limits for the inks themselves but does for other materials such as fountain solutions and cleaning solvents as shown below.

VOC Content for Fountain Solution Materials			
	VOC Content Limits % by weight		
	Heatset Web Offset Lithography		
Fountain Solutions	Chilled Using Refrigerated Chiller	3	
Containing Alcohol	Non-Chilled	1.6	
Fountain Solutions Cont	raining No Alcohol	5	
	Coldset Web Offset Lithography		
Fountain Solutions Containing Alcohol Not allowed			
Fountain Solutions Containing No Alcohol 5		5	
Sheet-fed Offset Lithography with Maximum Sheet Size > 11 x 17 Inches or Total Solution Reservoir > 1 Gallon			
Fountain Solutions	Chilled using Refrigerated Chiller	8.5	
Containing Alcohol	Non-Chilled	5	
Fountain Solutions Containing No Alcohol		5	

The CTG recommends use of solvents for blanket washing, roller washing, metering roller cleaners, and other cleaners used for cleaning a press, press parts, or to remove dried ink from areas around the press with a VOC composite vapor pressure less than 10 mm Hg at 20 °C or containing less than 70% VOC by weight.

California Air Resource Board (CARB)

BACT:

The CARB BACT Guidelines tool did not list any BACT Guidelines that are not already coved by the five Districts listed below.

RULE REQUIREMENTS:

None

Sacramento Metropolitan AQMD

BACT:

Source: BACT Determination #250 – Lithographic Offset Heatset Printing Press

Date: 3/24/2020

Lithographic Offset, Heatset		
Pollutant Standard		
VOC	Dryer waste gas vented to a control device with 98% control efficiency or an outlet VOC concentration of 10 ppmv and compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302.	

Lithographic Offset, Heatset		
Pollutant	Standard	
NOx	Dryer combustion emissions no more than 30 ppmvd @ 3% O ₂	
SOx	No standard	
PM10	Vent dryer waste gas to a VOC control device	
PM2.5	No standard	
СО	Natural gas fuel used in drying oven	
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	

Source: <u>BACT Determination #251 – Lithographic Offset Non-heatset Printing Press</u>

Date: 3/24/2020

Lithographic Offset, Non-Heatset			
Pollutant	Standard		
VOC	Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302. If the total uncontrolled VOC emissions from the unit are ≥ 6,480 lbs per year, then a VOC control system must be installed with at least 98.5% overall system efficiency (capture and destruction). (A)		
NOx	No standard		
SOx	No standard		
PM10	No standard		
PM2.5	No standard		
СО	No standard		
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency		

⁽A) The SMAQMD has not permitted a lithographic offset non-heatset press with emissions 6,480 lbs of VOC per year or greater and has not required a VOC control system on a non-heatset press due to BACT. Therefore, the portion of this standard requiring a VOC control system if emissions are 6,480 lbs of VOC per year or greater has not been achieved in practice and should be considered only technologically feasible.

T-BACT:

Source: <u>BACT Determination #250 & 251 – Lithographic Offset Printing Presses</u>

Date: 3/24/2020

Capture and vent emissions to a VOC control device with at least 98.5% destruction/recovery device efficiency. This standard applies to both heatset and non-heatset presses.

RULE REQUIREMENTS:

Rule 450 - Graphic Arts Operations (Adopted 10/23/08)

This rule applies to any graphic arts operation.

Standards:

General Printing Materials		
Material Type	VOC Content g/l (lb/gal) Less water and exempt compound	
Printing Ink	300 (2.5)	
Adhesive	150 (1.25)	
Coating	300 (2.5)	

VOC Content for Fountain Solution Materials			
	Material Type	VOC Content Limits % by weight	
Heatset Web Offset Lithography			
Fountain Solutions	Chilled Using Refrigerated Chiller	3	
Containing Alcohol	Non-Chilled	1.6	
Fountain Solutions C	ontaining No Alcohol	5	
	Coldset Web Offset Lithography		
Fountain Solutions Containing Alcohol Not allowed		Not allowed	
Fountain Solutions Containing No Alcohol		5	
Sheet-fed Offse	t Lithography with Maximum Sheet Size > Solution Reservoir > 1 Gallon	> 11 x 17 Inches or Total	
Fountain Solutions	Chilled using Refrigerated Chiller	8.5	
Containing Alcohol	Non-Chilled	5	
Fountain Solutions C	ontaining No Alcohol	5	
	All Other Presses		
Fountain Solutions Chilled Using Refrigerated Chiller		10	
Fountain Solutions Non-Chilled		8	

Solvent Cleaning Materials		
Material Type		VOC Content g/l (lb/gal) Including water and exempt compounds
General Cleaning		25 (0.21)
Application Equipment Cleaning	On-Press Components	100 (0.83)
	Removable Press Components	25 (0.21)

Solvent Cleaning Materials		
Material Type	VOC Content g/l (lb/gal) Including water and exempt compounds	
Ultraviolet/Electron Beam Inks	100 (0.83)	

Heatset web offset lithographic printing presses that have the potential to emit from the drying oven, prior to emissions control equipment, greater than or equal to 25 tons/year of VOC must install air pollution control equipment with an overall system efficiency of 95%.

South Coast AQMD

BACT:

Source: SCAQMD BACT Guidelines for Non-Major Polluting Facilities (Part D) (9/2/22)

Lithographic or Offset, Heatset		
Pollutant	Standard	Updated
VOC	Low VOC Fountain Solution (≤ 8% by vol. VOC) Low VOC (≤ 100 g/l) Blanket and Roller Washes Oil-Based or UV-Curable Inks Compliance with SCAQMD Rules 1130 and 1171	2/2/18
	Oven vented to a thermal oxidizer (≥ 0.3 sec. Retention Time at ≥ 1,400 °F; 95% Overall Efficiency)	10/20/00
NOx	Compliance with BACT requirements for Thermal Oxidizer Compliance with BACT requirements for Other Dryers and Ovens	9/2/22
SOx	No standard	N/A
PM10	Venting to a thermal oxidizer (≥ 0.3 sec. Retention Time at ≥ 1,400 °F)	2/1/19
PM2.5	No standard	N/A
СО	Compliance with BACT requirements for Thermal Oxidizer	N/A

Lithographic or Offset, Non-Heatset		
Pollutant	Standard	Updated
VOC	Low VOC Fountain Solution (≤ 8% by vol. VOC) Low VOC (≤ 100 g/L) Blanket and Roller Washes Oil-Based or UV-Curable Inks Compliance with SCAQMD Rules 1130 and 1171	2/1/19
NOx	No standard	N/A
SOx	No standard	N/A

Lithographic or Offset, Non-Heatset		
Pollutant	Standard	Updated
PM10	No standard	N/A
PM2.5	No standard	N/A
СО	No standard	N/A

Other Dryers and Ovens – Direct and Indirect Fired (Excluding digester or landfill gas fired units)		
Pollutant	Standard	Updated
VOC	Afterburner (≥ 0.3 sec. Retention Time at ≥ 1,400 °F)	1988
NOx	30 ppmvd @ 3% O ₂	4/10/98
SOx	Natural Gas	10/20/00
PM10	Natural Gas	10/20/00
PM2.5	No standard	N/A
СО	No standard	N/A

<u>T-BACT:</u>
There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:
Reg XI, Rule 1130 – Graphic Arts (5/2/14)
This rule is applicable any graphic arts operation.

Standards:

Inks, Adhesive, and Coatings		
Graphic Arts Material VOC Content (g/L)		
Adhesive	150	
Coating	300	
Offset Lithographic Ink	300	

VOC Content for Fountain Solution Materials		
Material Type VOC Content Limits (g/L)		
Heatset Web-Fed		
Llaina Alaahal	Without Refrigerated Chiller	16
Using Alcohol	With Refrigerated Chiller	30

VOC Content for Fountain Solution Materials		
1	Material Type	VOC Content Limits (g/L)
Using Alcohol Substitute		50
Sheet-Fed		
Using Alcohol	Without Refrigerated Chiller	50
	With Refrigerated Chiller	85
Using Alcohol Substitute		50
Non-Heatset Web-Fed		
Using Alcohol		Prohibited
Using Alcohol Substitute		50

An owner or operator may install a control device which reduces VOC by 95% by weight from an emission collection system that collects at least 90% of the VOC emissions generated by the source instead of complying with the VOC content limits in the tables above.

Reg XI, Rule 1171 – Solvent Cleaning Operations (5/1/09)

This rule applies to any operation where solvent cleaning is conducted as part of a business.

Solvent Cleaning of Ink Application Equipment		
Type VOC Content Limit g/l (lb/gal)		
General		25 (0.21)
Lithographic	Roller Wash, Blanket Wash, & On-Press Components	100 (0.83)
(Offset) Removable Press Components		25 (0.21)
Ultraviolet Ink/ Electron Beam Ink Application Equipment 100 (0.83)		

Reg XI, Rule 1147 – NOx Reductions from Miscellaneous Sources (5/6/22)

This rule applies to manufacturers, distributers, retailers, installers, owners, and operators of gaseous and/or liquid fuel fired combustion equipment with NOx emissions that require that require a South Coast AQMD permit and when other South Coast AQMD Regulation XI rules are not applicable to the Unit.

Equipment Category	Process Temperature	Emission Limit (ppmv corrected to 3% O ₂ , dry unless otherwise specified)	
		NOx	СО
Gaseous Fuel-Fired Afterburner, Degassing Unit, Thermal Oxidizer, Catalytic Oxidizer or Vapor Incinerator	All	20 ppmv or 0.024 lb/MMBtu	1,000 ppmv

Equipment Category	Process Temperature	Emission Limit (ppmv corrected to 3% O ₂ , dry unless otherwise specified)	
		NOx	со
Gaseous Fuel-Fired Oven, Dehydrator, Dryer, Heater, Kiln, Calciner, Cooker, Roaster, Furnace, or Heated Storage Tank	< 1,200 °F	20 ppmv or 0.024 lb/MMBtu	1,000 ppmv
	≥ 1,200 °F	30 ppmv or 0.036 lb/MMBtu	1,000 ppmv
All liquid fuel fired Unite	< 1,200 °F	40 ppmv or 0.053 lb/MMBtu	1,000 ppmv
All liquid fuel-fired Units	≥ 1,200 °F	60 ppmv or 0.073 lb/MMBtu	1,000 ppmv

San Joaquin Valley APCD

BACT:
Source: SJVAPCD BACT Guideline 4.7.1 (5/11/22)

This determination has been rescinded as of May 11, 2022.

Source: SJVAPCD BACT Guideline 4.7.2 (10/15/10)

Offset Lithographic Printing – Non-heat Set Press			
Pollutant	Standard		
Foliutant	Achieved in Practice	Technologically Feasible	
VOC	Using materials with the following VOC contents: Inks: less than 5% VOC by weight (less water and exempt compounds) or less than 30% VOC by weight (less water and exempt compounds) for high end graphics. Fountain Solutions: less than 5% by volume for coldset web offset lithographic, less than 5% by volume for sheet-fed offset lithographic with maximum sheet size greater than 11x17 inches, and less than 8% by volume for high end graphics	VOC capture and incineration; or VOC capture and carbon adsorption and using materials with the following VOC contents: Inks: less than 5% VOC by weight (less water and exempt compounds) or less than 30% VOC by weight (less water and exempt compounds) for high end graphics. Fountain Solutions: less than 5% by volume for coldset web offset lithographic, less than 5% by volume for sheet-fed offset lithographic with maximum sheet size greater than 11x17 inches, and less than 8% by volume for high end graphics	
NOx	N/A	N/A	
SOx	N/A	N/A	
PM10	N/A	N/A	
PM2.5	N/A	N/A	

Offset Lithographic Printing – Non-heat Set Press			
Dellutent	Standard		
Pollutant	Achieved in Practice	Technologically Feasible	
СО	N/A	N/A	

T-BACT:

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Rule 4607 – Graphic Arts and Paper, Film, Foil and Fabric Coatings (12/18/08)
The VOC material standards are applicable to any graphic arts printing operation that emits 200 pounds or more VOC per 12 rolling consecutive calendar months.

VOC Content Limits for Inks, Coatings, and Adhesives		
Material Grams of VOC per liter (lb/gal), less water and exempt compounds, as applied		
Inks	300 (2.5)	
Coatings	300 (2.5)	
Adhesives	150 (1.25)	

VOC Content Limits for Fountain Solution		
Material	Percent VOC by Volume	
Heatset Web Offset Lithographic	1.6	
Coldset Web Offset Lithographic	5.0	
Sheet-fed Offset Lithographic with maximum sheet size greater than 11 x 17 inches	5.0	
All Other Presses	8.0	

VOC Content Limits for Solvent Cleaning				
Type of Solvent Cleaning Operation Grams of VOC per liter (lb/gal)				
Surface Preparation for Coating, Ink, or Adhesive Application	25 (0.21)			
Repair and Maintenance Cleaning	25 (0.21)			
Cleaning of Coating or Adhesive Application Equipment	25 (0.21)			

VOC Content Limits for Solvent Cleaning				
Type of Solvent Cleaning Operation Grams of VOC per liter (lb/gal)				
Lithographic (Offset) Roller Wash, Blanket Wash, and On-Press Components	100 (0.83)			
Lithographic (Offset) Removable Press Components	25 (0.21)			
Ultraviolet Ink / Electron Beam Ink Application Equipment	100 (0.83)			

In lieu of complying with the material limits in this rule a VOC emission control system may be used that has an overall VOC capture and control efficiency of 75% for lithographic offset printing presses.

San Diego County APCD

BACT:

Source: NSR Requirements for BACT (June 2011), (pg 3-14)

Graphics Arts Operations (< 5 tons/year)							
Pollutant	Standard						
Foliutalit	Achieved in Practice	Technologically Feasible					
VOC	 Use of low VOC fountain solution (< 6% VOC by volume), Capture & recycle blanket and roller tray wash, Use of cleanup solvent which has either less than 200 grams VOC per liter or vapor pressure of less than 5 mm Hg at 20 °C, Use of metering roll cleanup solvent which has less than 100 grams VOC per liter or vapor pressure of less than 10 mm Hg at 20 °C, and Use of inks which have a VOC content of less than 300 grams per liter (2.5 lb/gal). 	 Use of low VOC fountain solution (< 5% VOC by volume), Capture & recycle blanket and roller tray wash, Use of cleanup solvent which has either less than 100 grams VOC per liter or vapor pressure of less than 5 mm Hg at 20 °C, Use of metering roll cleanup solvent which has less than 100 grams VOC per liter or vapor pressure of less than 5 mm Hg at 20 °C, and Use of inks which have a VOC content of less than 225 grams per liter (1.9 lb/gal). 					
NOx	N/A	N/A					
SOx	N/A	N/A					
PM10	N/A	N/A					
PM2.5	N/A	N/A					

Graphics Arts Operations (< 5 tons/year)					
Standard					
Pollutant	Achieved in Practice	Technologically Feasible			
СО	N/A	N/A			

T-BACT:

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Rule 67.16 – Graphic Arts Operations (11/9/11)

This rule applies to all continuous web or single sheet fed graphic arts printing, processing, laminating or drying operations and digital printing operations.

The material standards of this rule do not apply to stationary sources which emit less than an average of 15 lbs of VOC from all graphic arts operations per day of operation, excluding digital printing operations, for each calendar month.

Graphic arts materials (except adhesives): < 300 grams of VOC per liter (2.5 lb/gal) as applied, less water and exempt compounds.

Adhesives: ≤ 150 grams of VOC per liter (1.25 lb/gal), as applied, less water and exempt compounds.

Fountain solutions: $\leq 5\%$ VOC by volume or $\leq 8.5\%$ VOC by volume refrigerated to a temperature below 60°F.

Cleaning material: < 100 grams VOC per liter or the total VOC vapor pressure is 5 mm of Hg at 20 °C or less.

In lieu of complying with the material standards, install and operate a VOC emission capture and control device with efficiency of at least 85% by weight.

Bay Area AQMD

BACT:

Source: BAAQMD BACT Guideline 110.1.1 (8/24/98)

Lithographic or Offset Printing - Heatset					
Pollutant	Standard				
Pollutant	Achieved in Practice	Technologically Feasible			
VOC	Low VOC fountain solution (≤ 8% by vol.); and minimum possible VOC blanket wash & roller & tray washes; and cleanup solvents w/ ≤ 7.5 lb VOC/gal and VOC vapor pressure ≤ 25 mm Hg or ≤ 30% by vol. VOC; and kerosene-like oil based inks Low VOC fountain solution (≤ 6% by vol.); automatic blanket & roller wash w/ solv capture & recycle; and cleanup solvents w/ 2.5 lb VOC/gal or VOC vapor pressure mm Hg; and kerosene-like oil-based inks cost-effective, capture and vent VOC afterburner or carbon adsorption system w/ 98.5% destruction / recovery development.				
NOx	N/A	N/A			
SOx	N/A N/A				
PM10	Compliance with Reg. 6, Visible Emissions. Oven venting to an afterburner (≥ 0.3 sec. retention time at ≥ 1,400 °F) w/ overall capture/destruction efficiency ≥ 90%				
PM2.5	N/A	N/A			
СО	N/A	N/A			

Source: BAAQMD BACT Guideline 110.2.1 (8/24/98)

Offset Lithographic Printing – Non-heat Set Press					
Dellutent	Standard				
Pollutant	Achieved in Practice	Technologically Feasible			
VOC	Low VOC fountain solution (≤ 8% by vol.); and minimum possible VOC blanket wash & roller & tray washes; and cleanup solvents w/ ≤ 7.5 lb VOC/gal and VOC vapor pressure ≤ 25 mm Hg or ≤ 30% by vol. VOC; and kerosene-like oil based inks Low VOC fountain solution (≤ 6% by an automatic blanket & roller was solvent capture & recycle; and cleanup solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like oil based inks low VOC fountain solution (≤ 6% by an automatic blanket & roller was solvent capture & recycle; and cleanup solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like oil based inks low VOC fountain solution (≤ 6% by an automatic blanket & roller was solvent capture & recycle; and cleanup solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like oil based inks low VOC fountain solution (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like oil based inks. If cost-effective, capture vent VOC to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb VOC/gal or VOC pressure ≤ 5 mm Hg; and kerosene-like vent volc to afterburner or condition (≤ 6% by an automatic blanket & roller was solvents w/ ≤ 2.5 lb				
NOx	N/A	N/A			
SOx	N/A	N/A			
PM10	N/A	N/A			
PM2.5	N/A	N/A			
СО	N/A	N/A			

T-BACT:

T-BACT standard is referenced as the VOC standard for both heatset and non-heatset lithographic offset printing presses.

RULE REQUIREMENTS:

Regulation 8, Rule 20 – Graphic Arts Printing and Coating Operations (11/19/08)

This rule applies to all graphic arts operations.

Product Limits				
grams VOC per liter of product a applied, less water and exempt solvent (lbs/gal)				
Ink	300 (2.5)			
Coating	300 (2.5)			
Adhesive	150 (1.25)			
Web Splicing Adhesive	300 (2.5)			

Fountain Solution is limited to 8% VOC by volume.

Cleaning Product Limits					
Equipment VOC g/l (lb/gal) including water					
Specialty Lithographic Press	100 (0.83)				
Lithographic Press, by Manual Washing	100 (0.83)				
Lithographic Press, by Automatic Washing	100 (0.83)				
Adhesive Application Equipment	25 (0.21)				
Ultraviolet Ink Removal	100 (0.83)				
Other Press Parts ¹	25 (0.21)				

¹ Press parts that do not come into contact with inks, adhesives, or coatings. Other press parts include, but are not limited to, pressure rollers, motors, and belts.

In lieu of compliance with the above material limits a VOC emission control system is installed that has an overall efficiency of at least 75% on a mass basis.

Summary of Achieved in Practice Control Technologies

The following control technologies have been identified and are ranked based on stringency:

Heatset Printing Presses - VOC

Controls for limiting VOC emissions rely on either reducing the VOC content of the materials used in the printing operation and/or use of a VOC emission control device. In a heatset

printing process the waste gas from the dryer would be vented to a VOC control device if required, which would control most VOC emissions from the process. In terms of stringency a control device would reduce VOC emissions more than using low VOC printing material and, therefore, will be ranked as such.

	Achieved in Practice VOC Standards for Lithographic Offset Heatset Printing					
Rank	Standard	Technology Description	Source	Year	Comments	
1	 Dryer waste gas vented to a control device with 98% control efficiency or an outlet VOC concentration of 10 ppmv, and Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302. 	VOC control device and low VOC materials	SMAQMD BACT	2020		
2	VOC control device with 98% destruction or 10 ppmv outlet, and Use of fountain solutions and cleaning solvents as recommended in the CTG	VOC control device and Low VOC Materials	EPA BACT	2015		
3	 Low VOC Fountain Solution (≤ 8% by vol. VOC), Low VOC (≤ 100 g/l) Blanket and Roller Washes, Oil-Based or UV-Curable Inks, Compliance with SCAQMD Rules 1130 and 1171, and Oven Vented to a thermal oxidizer (≥ 0.3 sec. Retention Time at ≥ 1,400 °F; 95% Overall Efficiency) 	Thermal Oxidizer and Low VOC Materials	SCAQMD BACT	2022		

	Achieved in Practice VOC Standards for Lithographic Offset Heatset Printing					
Rank	Standard	Technology Description	Source	Year	Comments	
4	 Inks & coatings ≤ 300 g/l Adhesive ≤ 150 g/l Web-feed fountain solution ≤ 1.6% by volume Sheet-fed with a maximum size of 11x17" fountain solution ≤ 5% by volume Other fountain solution ≤ 8% by volume Solvent cleaning for blanket, rollers and on press components ≤ 100 g/l All other solvent cleaning ≤ 25 g/l 	Low VOC Materials	SJVAPCD Rule	2008		
5	 Fountain Solution < 6% VOC by volume; Capture & recycle blanket and roller tray wash; Cleanup solvent with < 200 g/l VOC or with a vapor pressure of < 5 mm Hg at 20 °C; Metering roll wash < 100 g/l VOC or vapor pressure of < 10 mm Hg at 20 °C; Inks < 300 g/l VOC or Compliance with Graphic Arts Rule 67.16 	Low VOC Materials	SDCAPCD BACT/Rule	2011/ 2012	Parts of the Graphic Arts rule are more stringent than the BACT and vice versa. Therefore, facilities would need to comply with the most stringent standard between the two This BACT determination is not specific to heatset printers and is only required for operations	
6	 Inks, coatings, web splicing adhesive ≤ 300 g/l General adhesive ≤ 150 g/l Fountain solution ≤ 8% by volume Solvent cleaning for specialty presses, manual washing, and automatic washing ≤ 100 g/l General solvent cleaning and for adhesive application equipment ≤ 25 g/l 	Low VOC Materials	BAAQMD Rule	2008		

<u>Heatset Printing Presses – NOx</u>

NOx emissions in heatset printing come from fuel combustion for the dryer. EPA AP-42 Section 4.9.1 for Graphic Arts states that typical temperatures for lithographic dryers range from 400 to 500 °F. Although, SCAMQD has a less stringent NOx standard for dryers with a process temperature of at least 1,200 °F, it will not be listed because process temperatures at this level are unrealistic for this type of application.

Achieved in Practice NOx Standards for Lithographic Offset Heatset Printing					
Rank	Standard Source Year				
1	20 ppmv @ 3% O ₂ or 0.036 lb/MMBtu	SCAQMD Rule	2022		
2	30 ppmvd @ 3% O ₂	SMAQMD BACT	2020		
3	No standard	EPA, SJVUAPCD, SDCAPCD, BAAQMD	N/A		

Heatset Printing Presses – CO

Emissions for CO in heatset printing come from fuel combustion for the dryer.

	Achieved in Practice CO Standards for Lithographic Offset Heatset Printing				
Rank	Standard Source Year				
1	1,000 ppmv @ 3% O ₂	SCAQMD Rule	2022		
2	Use of natural gas fired dryer	SMAQMD BACT	2020		
3	No standard EPA, SJVUAPCD, SDCAPCD, BAAQMD N/A				

Heatset Printing Presses – PM10

Heatset inks typically will contain a petroleum-based oil and during the heating process the oils will condense and form PM10 droplets. The BAAQMD specifically lists in their BACT determination that PM10 emissions must comply with the visible emissions regulations. Although, this requirement is not listed for other air districts (because it is not specifically outlined in a BACT determination) typically any equipment regardless of BACT standard being set is required to comply with visible emission requirements.

Achieved in Practice PM10 Standards for Lithographic Offset Heatset Printing				
Rank	Standard Source Year			
1	Vent dryer waste gas to a VOC control device	SMAQMD BACT	2020	
1	Venting to an Afterburner (≥ 0.3 sec. Retention Time at ≥ 1,400 °F)	SCAQMD BACT	2019	
2	Compliance with Reg. 6, Visible Emissions	BAAQMD BACT	1998	

Achieved in Practice PM10 Standards for Lithographic Offset Heatset Printing				
Rank	Standard Source Year			
1	Vent dryer waste gas to a VOC control device	SMAQMD BACT	2020	
3	No standard	EPA, SMAQMD, SJVAPCD, SDCAPCD	N/A	

Non-heatset Printing Presses - VOC

Emission limits for fountain solutions vary from rule to rule mostly based on how the emission limit is expressed. SCAQMD lists emission limits for fountain solutions in grams per liter while SMAQMD expresses the limit in percent VOC by mass, and SJVUAPCD expresses the limits in percent VOC by volume. It is difficult to compare these limits because percent by mass and volume can vary from solution to solution depending upon its physical properties.

The EPA Control Techniques Guidelines for Offset Lithographic Printing and Letter Press Printing (CTG) list recommends emission standards as percent mass. The SMAQMD Rule also lists these identical standards as a percent mass. SCAQMD updated their emission limits for fountain solutions in 2014. In their staff report for these amendments they state that their emission limits are equivalent to those of the CTG except they have converted the limits to grams per liter to remain consistent with the previous emission limits for fountain solutions. Additionally, in 2008, amendments were made to SJVUAPCD Rule 4607, according to the associated staff report, to align the emission standards to that of other districts and the CTG.

Even though the emission limits for fountain solutions differ in the way they are expressed between the SCAQMD, SMAQMD, and SJVUAPCD all districts claim to be equivalent to the recommendations in the CTG.

The previous SMAQMD BACT Determination required a VOC control device for units emitting at least 6,480 lbs of uncontrolled VOC per year. This emissions threshold was based on what was considered technologically feasible and cost effective at the time the determination was developed. This portion of the VOC standard has never been required for a lithographic offset non-heatset printing press. Therefore, the achieved in practice standard will only be considered compliance with their graphic arts rule standards.

Achieved in Practice VOC Standards for Lithographic Offset Non-heatset Printing				
Rank	VOC Standard	Source	Year	Comments
1	Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302 Inks & Coatings: 300 g/l (2.5 lb/gal) Adhesives: 150 g/l (1.25 lb/gal) Fountain solutions equivalent to CTG Cleaning solvents for on-press components or ultraviolet/electron beam inks: 100 g/l (0.83 lb/gal) Solvents for general or removable press component cleaning: 25 g/l (0.21 lb/gal)	SMAQMD BACT	2020	

Α	Achieved in Practice VOC Standards for Lithographic Offset Non-heatset Printing				
Rank	VOC Standard	Source	Year	Comments	
1	Compliance with SCAQMD Rules 1130 and 1171 Inks & Coatings: 300 g/l (2.5 lb/gal) Adhesives: 150 g/l (1.25 lb/gal) Fountain solutions equivalent to CTG (at least 8% by volume) Cleaning solvents for on-press components or ultraviolet/electron beam inks: 100 g/l (0.83 lb/gal) Solvents for general or removable press component cleaning: 25 g/l (0.21 lb/gal)	SCAQMD BACT	2019	SCAQMD BACT requires compliance with Graphic Arts Rule 1130 and Solvent Cleaning Operations Rule 1171	
1	 Inks: 5% by weight for low end graphics (A); 30% by weight for high end graphics (A) or 300 g/l (2.5 lb/gal) whichever is more stringent. Coatings: 300 g/l (2.5 lb/gal) Adhesives: 150 g/l (1.25 lb/gal) Fountain solutions equivalent to CTG Cleaning solvents for on-press components or ultraviolet/electron beam inks: 100 g/l (0.83 lb/gal) Solvents for general or removable press component cleaning: 25 g/l (0.21 lb/gal) 	SJVUAPCD BACT/Rule	2010/ 2008	Rule limits were used for material standards not specified in the BACT determination	
2	 Inks & Coatings: 300 g/l (2.5 lb/gal) Adhesives: 150 g/l (1.25 lb/gal) Fountain solutions: 5% by volume or 8.5% by volume if refrigerated to a temperature below 60 °F Capture and recycle blanket and roller tray wash Cleaning solvents: 100 g/l (0.83 lb/gal) or a vapor pressure of 5 mm Hg at 20 °C. 	SDCAPCD Rule/BACT	2012/2011	Requirement to capture and recycle washes is from the BACT determination otherwise standards are from Rule	
3	 Inks & Coatings: 300 g/l (2.5 lb/gal) Web Splicing Adhesive: 300 g/l (2.5 lb/gal) All Other Adhesives: 150 g/l (1.25 lb/gal) Fountain solutions: 8% by volume Cleaning solvents for on-press components or ultraviolet/electron beam inks: 100 g/l (0.83 lb/gal) Solvents for general or adhesive application equipment cleaning: 25 g/l (0.21 lb/gal) 	BAAQMD Rule	2008		
NA	 Use of water-based UV/EB inks Fountain solution ≤ 5% VOC by weight Washes ≤ 10 mm Hg at 20 °C or total VOC ≤ 70% by weight 	EPA BACT	2018	Determination not ranked because it is specific to a UV/EB printing press	

(A) According to SJVAPCD permit language, high-end graphic print jobs are defined as any print job that has a glossy finish, multiple colors, highly refined graphic image, or very high letter-quality printing. Low-end graphic print jobs are defined as anything not high-end graphic.

Toxics:

Ac	Achieved in Practice Toxic Standards for Lithographic Offset Heatset & Non-Heatset Printing				
Rank	Organic HAP/VHAP Standard	Source	Year		
1	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	SMAQMD BACT	2020		
2	Low VOC fountain solution (≤ 8% by vol.); and minimum possible VOC blanket wash & roller & tray washes; and cleanup solvents w/ ≤ 7.5 lb VOC/gal and VOC vapor pressure ≤ 25 mm Hg or ≤ 30% by vol. VOC; and kerosene-like oil based inks	BAAQMD BACT	1989		

Summary Table:

The following control technologies have been identified as the most stringent, achieved in practice control technologies. The SMAQMD Rule 450 material standards have been referenced for convenience, for enforcement purposes, when possible:

Best Control Technologies Achieved in Practice for Heatset Lithographic Offset Printing			
Pollutant	Standard	Source	
VOC	Dryer waste gas vented to a control device with 98% control efficiency or an outlet VOC concentration of 10 ppmv, and Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302.	SMAQMD BACT	
NOx	NOx 20 ppmv @ 3% O ₂ or 0.036 lb/MMBtu		
SOx	No standard	N/A	
PM10	Vent dryer waste gas to a VOC control device	SMAQMD BACT	
PM2.5	No standard	N/A	
СО	1,000 ppmv @ 3% O ₂	SCAQMD Rule	
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	SMAQMD BACT	

Best Control Technologies Achieved in Practice for Non-Heatset Lithographic Offset Printing				
Pollutant	Standard	Source		
VOC	Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302.	SMAQMD BACT		
NOx	No standard	N/A		
SOx	No standard	N/A		
PM10	No standard	N/A		
PM2.5	No standard	N/A		
СО	No standard	N/A		
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	SMAQMD BACT		

B. TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.):

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

Technologically Feasible Alternatives				
Pollutant	ant Emission Source Standard		Source of Standard	
	Heatset	No other technologically feasible option identified	N/A	
VOC	Non-Heatset	Carbon Adsorption SystemThermal Oxidizer	SMAQMD & BAAQMD	
NOx	All Presses	No other technologically feasible option identified	N/A	
SOx	All Presses	No other technologically feasible option identified	N/A	
PM10	All Presses	No other technologically feasible option identified	N/A	
PM2.5	All Presses	No other technologically feasible option identified	N/A	
СО	Heatset	No other technologically feasible option identified	N/A	
CO	Non-Heatset	No other technologically feasible option identified	N/A	

Technologically Feasible Alternatives				
Pollutant Emission Source Category Standard			Source of Standard	
Organic HAP/VHAP (T-BACT)	Heatset	No other technologically feasible option identified	N/A	
	Non-Heatset	No other technologically feasible option identified	N/A	

Two common types of VOC control devices are carbon adsorption systems and thermal oxidizers. BACT Determinations from the SMAQMD and BAAQMD show a maximum overall VOC control effectiveness of 98.5%. As these kinds of devices have been used in other applications to control VOC it will be determined to be technologically feasible if cost effective.

Cost Effective Determination:

The use of low VOC materials could make emissions low enough where these devices are not cost effective. Therefore, the analysis below will calculate the threshold for annual VOC emissions where the control device would become cost effective. The cost effectiveness threshold for VOC is a maximum cost of \$17,500 per ton of VOC reduced. A summary of the cost effectiveness calculations using the 2018 EPA Air Pollution Cost Control Manual calculations and assumptions are show below.

Basic assumptions:

- 1) Single 4-color lithographic printing press operation.
- 2) Operation based on 8 hours per day, 5 days per week, 52 weeks per year.
- 3) Press room dimensions: 40'W x 60'L x 20'H (because the press room is relatively small, a hood is not necessary)
- 4) The press room is assumed to be the enclosure with an overall system efficiency of 98.5% and venting to the control device through a general ventilation system.
- 5) Overall design of the system specified was chosen because it yielded the lowest annual costs.
- 6) Electricity cost was set at \$0.1124 per kWh and natural gas cost was set at \$14.60 per 1,000 scf. Both were based on the most current local industrial rates.
- 7) Cost adjusted to 2022 dollars based on the CPI.
- 8) All other cost calculations and assumptions are based on the EPA Air Pollution Control Cost Manual (2018).

Carbon Adsorption System

System Type: Horizontal Stainless Steel (304) Fixed-Beds with Steam Regeneration

Waste Gas Flow Rate = 8,000 acfm (10 air changes per hour)

Equipment Life = 15 years (EPA recommended value)

Total Capital Investment = \$337,276

Direct Annual Cost = \$13,432 per year

Indirect Annual Cost = \$57,494 per year

VOC Recovery Credit = \$2,576 per year

Total Annual Cost = \$68,351 per year

VOC Removed = 3.90 tons per year

Cost of VOC Removal = \$17,512 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a carbon absorber is shown in Attachment B. Uncontrolled VOC emissions of 7,806 lb/year or greater is the cost-effective threshold for control equipment using carbon absorption control technology.

Thermal Oxidizer:

System Type: Regenerative Thermal Oxidizer

Waste Gas Flow Rate = 20,000 scfm (EPA recommended value)

Equipment Life = 20 years (EPA recommended value)

Total Capital Investment = \$1,435,800

Direct Annual Cost = \$101,474 per year

Indirect Annual Cost = \$200,142 per year

Total Annual Cost = \$301,617 per year

VOC Removed = 17.20 tons per year

Cost of VOC Removal = \$17,535 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a thermal oxidizer is shown in Attachment C. Uncontrolled VOC emissions of 34,924 lb/year or greater is the cost-effective threshold for control equipment using thermal oxidation control technology.

Conclusion: In this analysis, different emission operating levels are presented with the corresponding total cost per ton of VOC controlled using either a carbon adsorption control or a thermal oxidizer. Uncontrolled VOC emission level of 7,806 lb per year or greater must be reached in order for the carbon absorption control option to be cost effective. Uncontrolled VOC emission level of 34,924 lb per year or greater must be reached in order for a thermal oxidizer to be cost effective. The emissions levels for the cost effectiveness of controls are based on the District cost effective limit for VOC of \$17,500 per ton controlled. Therefore, using the 2018 EPA Air Pollution Cost Control Manual calculations and assumptions it is technologically feasible and cost effective to require a VOC control device if total uncontrolled VOC emissions are at least 7,806 lbs per year for a lithographic offset non-heatset printing press.

C. SELECTION OF BACT:

Based on the above analysis, BACT for VOC, NOx, SOx, PM10, and CO will remain at what is currently achieved in practice.

BACT DETERMINATION #325 FOR HEATSET LITHOGRAPHIC OFFSET PRINTING			
Pollutant	Standard	Source	
VOC	Dryer waste gas vented to a control device with 98% control efficiency or an outlet VOC concentration of 10 ppmv and compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302.	SMAQMD	
NOx	Dryer combustion ≤ 20 ppmv @ 3% O₂ or 0.036 lb/MMBtu	SCAQMD	
SOx	No standard	N/A	
PM10	Vent dryer waste gas to a VOC control device	SMAQMD	
PM2.5	No standard	N/A	
СО	1,000 ppmv @ 3% O ₂	SCAQMD	
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	SMAQMD	

BACT DETERMINATION #326 FOR NON-HEATSET LITHOGRAPHIC OFFSET PRINTING			
Pollutant	Standard	Source	
VOC	Compliance with the material limits in SMAQMD Rule 450 Sections 301 and 302. If the total uncontrolled VOC emissions from the unit are ≥ 7,806 lbs per year, a VOC control system must be installed with at least 98.5% overall system efficiency (capture and destruction).	SMAQMD achieved in practice and tech. feasible analysis	
NOx	No standard	N/A	
SOx	No standard	N/A	
PM10	No standard	N/A	
PM2.5	No standard	N/A	
СО	No standard	N/A	
Organic HAP/VHAP (T-BACT)	Capture and vent VOC control device with at least 98.5% destruction / recovery device efficiency	SMAQMD	

APPROVED BY:	Brian F Krebs	DATE:	3/9/2023	
APPROVED BY:		DATE:	3/9/2023	

Attachment A

Review of BACT Determinations published by EPA

List of BACT determinations published in EPA's RACT/BACT/LAER Clearinghouse (RBLC) for Lithographic Offset Printing Presses:

	Surface Coating/Printing/Graphic Arts (Process 41.000) – Lithographic Offset Printing Presses						
RBLC#	Process Number	Permit Date ^(A)	Drying	Pollutant	Standard	Control Technology	Case-By- Case Basis
<u>IN-0193</u>	41.021	11/13/2013	Heatset	VOC	98% destruction or 10 ppmv; Fountain solution ≤ 3% VOC; Washes ≤ 10 mm Hg at 20°C	Thermal oxidizer; Low VOC materials; good work practices	Other
<u>IN-0277</u>	41.022	3/31/2018	Heatset	VOC	98% destruction or 50 ppmv; Fountain solution ≤ 3% VOC; Washes ≤ 10 mm Hg at 20°C or VOC ≤ 2.5 lb/gal	Thermal oxidizer; Low VOC materials; Good work practices	Other
<u>IN-0211</u>	41.022	6/12/2015	Heatset	VOC	98% destruction; Fountain solution ≤ 15% VOC; Washes ≤ 10 mm Hg at 20°C or VOC ≤ 7.0 lb/gal	Thermal oxidizer; Low VOC materials	Other
<u>IN-0207</u>	41.022	11/26/2014	Heatset	VOC	98% destruction or 50 ppmv; Fountain solution ≤ 3% VOC; Washes ≤ 10 mm Hg at 20°C or VOC ≤ 2.5 lb/gal	Thermal oxidizer; Low VOC materials; Good work practices	Other
<u>IN-0164</u>	41.023	6/28/2013	Heatset	VOC	98% destruction or 10 ppmv; Fountain solution ≤ 15% VOC; Washes ≤ 10 mm Hg at 20°C or VOC ≤ 7.0 lb/gal	Thermal oxidizer; Low VOC materials	Other
<u>LA-0336</u>	41.022	11/15/2018	Non-heatset	VOC	Use of water-based electron beam (EB) or ultraviolet (UV) inks and coatings; Fountain solution ≤ 5% VOC by weight; Washes ≤ 10 mm Hg at 20°C or total VOC ≤ 70% by weight	Low VOC materials; Good work practices	BACT-PSD

⁽A) Due to the large number of entries only determinations made (based on Permit Date) entered since 01/01/2012 are included in the above table.

⁼ Selected as the most stringent and most current BACT determinations achieved in practice.

Attachment B Detailed Cost Calculation for Carbon Adsorption

		Data Inputs	
Select the type of carbon adsorber system:		Fixed-Bed Carbon Adsorber with Sto	am Regeneration
For fixed-bed carbon adsorbers, provide the following information:			
Select the type of operation:		Continuous Operation	▼
Select the type of material used to fabricate the carbon adsorber vessels:		Stainless Steel, 304	▼
Select the orientation for the adsorber vessels:		Horizontal	▼
Enter the design data for the proposed Fixed-Bed Carbon Adsorber w	ith Steam Regeneration		
Number of operating hours per year (Θ_s)	2,080	hours/year	
Waste Gas Flow Rate (Q)	8,000	acfm (at atmospheric pressure and 77°F)	
VOC Emission Rate (m _{voc})	3.810	lbs/hour	
Required VOC removal efficiency (E)	98.5	percent	
Superficial Bed Velocity (v _b)	75.00	ft/min	
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15	Years*	* 15 years is a default equipment life. User should enter actual value, if known.
Estimated Carbon life (n)	5	Years	
Total Number of carbon beds (N _{total})	3	Beds*	* 3 beds is the default. User should enter actual number of beds, if known.
Number of carbon beds adsorbing VOC when system is operating (N _A)	2	Beds*	* 2 beds is the default. User should enter actual number of beds, if known.
Total time for adsorption (Θ_A)	12	hours*	* 12 hours is a default value. User should enter actual value, if known.
Total time for desorption (Θ_D)	5	hours*	* 5 hours is a default value. User should enter actual value, if known.
Estimated Carbon Replacement Rate (CRR)	379	lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.

Enter the Characteristics of the VOC/HAP: Name of VOC/HAP Partial Pressure of Toluene in waste gas stream Parameter "k" for Toluene Parameter "m" for Toluene Enter the cost data for the carbon adsorber: Toluene Toluene 0.0104 psia 0.551 Note: Typical values of "k" and "m" for some common 0.110 VOCs are shown in Table A.

2022 Desired dollar-year CPI for 2022 **317.299** CPI value for Oct. 2022 168.9 1999 7 percent (Current bank prime rate) Annual Interest Rate (i) Electricity (Pelec) \$0.1124 per kWh Steam (P_s) \$5.00 per 1,000 lbs* \$5.00/1.000 lbs is a default value. User should enter actual value, if known. Cooling Water (Pcw) \$3.55 per 1,000 gallons of water* \$3.55/1,000 gallons is a default value. User should enter actual value, if known. Operator Labor Rate \$27.48 per hour* \$27.48/hour is a default value. User should enter actual value, if known. Maintenance Labor Rate \$30.23 per hour* \$30.23/hour is a default value. User should enter actual value, if known. If the rate is not kno Carbon Cost (CC) \$4.20 per lb \$4.20/lb is a default value based on 2018 market price. User should enter actual value, if kno

\$0.33 per lb*

\$0.00 per lb*

Disposal/Treatment Cost for Recovered VOC (D_{voc})

If known, enter any additional costs for site preparation and building construction/modification:
Site Preparation (SP) =
Buildings (Bldg) =
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack)
(EC_{aux}) =

Re-Sale Value of Recovered VOC (Pvoc)

Contingency Factor (CF)

\$0.33/lb is a default value for recovered toluene based on 2018 data. User should enter actual

\$0/lb is a default value for disposal and/or treatment of recovered VOC/HAP. User should en

Cost Estimate

Capital Costs

Estimated capital costs for a Fixed-Bed Carbon Adsorber with Steam Regeneration with the following characteristics:

VOC Controlled/Recovered = Toluene Adsorber Vessel Orientation = Horizontal

Operating Schedule	e = Continuous Operation	
Total Carital Investment (TCI) (in 2022 dellars)		
Total Capital Investment (TCI) (in 2022 dollars) Parameter	Equation	Cost
Costs for Each Carbon Adsorber Vessel (C _v) =	$271 \times F_{m} \times S^{0.778} =$	\$27,375
Total Cost for All Carbon Adsorber Vessels and Carbon(EC _{Adsorb}) =	$5.82 \times Q^{-0.133} \times [C_c + (N_A + N_D) \times C_v] =$	\$147,685
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	\$32,000
Total Purchased Equipment Costs for Carbon Adsorber (A) =	= EC _{Adsorb} + EC _{aux} =	\$179,685
Total Purchased Equipment Costs for Carbon Adsorber (A) =	- EC _{Adsorb} + EC _{aux} -	\$179,005
Instrumentation -	0.10 × A =	Included in A
Instrumentation =		
Sales taxes =	0.03 × A =	\$5,391
Freight =	0.05 × A =	\$8,984
	Total Purchased Equipment Costs (B) =	\$194,060
Direct Installation Costs (in 2022 dollars)		
Parameter	Equation	Cost
Foundations and Supports =	0.08 × B =	\$15,525
Handling and Erection =	0.14 × B =	\$27,168
Electrical =	0.04 × B =	\$7,762
Piping =	0.02 × B =	\$3,881
Insulation =	0.01 × B =	\$1,941
Painting =	0.01 × B =	\$1,941
Site Preparation (SP) =		\$0
Buildings (Bldg) =		\$0
	Total Direct Costs (DC) = $B + (0.3 \times B) + SP + Bldg =$	\$252,277
Total Indirect Installation Costs (in 2022 dollars)		
Parameter	Equation	Cost
Engineering =	0.10 × B =	\$19,406
Construction and field expenses =	0.05 × B =	\$9,703
Contractor fees =	0.10 × B =	\$19,406
Start-up =	0.02 × B =	\$3,881
Performance test =	0.01 × B =	\$1,941
	Total Indirect Costs (IC) =	\$54,337
Contingency Cost (C) =	CF(IC+DC)=	\$30,661

Annual Electricity Cost = $0_{Dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{dec.} \times P_{dec.} \times P_{dec.} = 0_{Dec.} \times P_{dec.} \times P_{de$		Annual Costs		
Parameter				
Annual Electricity Cost = Que × Peter = S\$255 Annual Costs (Cs) = 3.43 × C/P, x Peter = S\$255 Annual Cost (Cs) = 3.43 × C/P, x Peter = S\$338 Querating for the cost of the cos		Faustien	Cont	
Annual Starm Cost (C.) = 3.30 x m _{ext} x 9, x P, = 3.33 x C/P, x P, = 5.33 x C/P, x P, x x		·		
Annual Cooling Water Cost (C _{Te}) = 3.3 k C/F, P, P, P _e = 3.3 k C/F, P, P _e = 5 source of Shours/shift viabor Rate × (Operating hours/shift) 53,572 source of Shours of Shou				
Operating Labor Costs: Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift) \$3,572 sizes Maintenance Costs: Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) \$3,330 has a size of the control of th			•	
Supervisor = 15% of Operator S536 Maintenance Costs: Labor = 0.5 hours/infits Labor = 0.5 hours/sints Labor = 0.5 hours/sints S3,330 Materials = 100% of maintenance labor S3,330 Carbon Replacement Costs: Labor = CRF _{frathon} × (Labor = CRF _{frat}	Annual Cooling Water Cost (C _{cs}) =	$3.43 \times C_s/P_s \times P_{wc} =$	\$338	
Labor = 0.5 hours/faint × Labor Rate × (Operating Hours/8 hours/shift) \$3,330 Matrician = 100% of maintenance labor \$3,330 Labor = CRF _{printer} × (Labor Rate × M _c)/CRR = \$8 \$455 Carbon CRF _{Lation} × CC × M _c × 1.08 = \$455 Indirect Annual Costs (DAC) = \$13,432 In 2022 dollars Indirect Annual Costs Cost	Operating Labor Costs:	· · · · · · · · · · · · · · · · · · ·		
Annual Costs (DAC) =	Maintenance Costs:			
Labor = CRF_cateury × (Labor Rate × M_L)/CRR = S	Widinteriunce costs.			
Carbon = CRF_tation x CC x M _t x 1.08 =	Carbon Renlacement Costs:			
Side	curson replacement costs.			
Indirect Annual Costs Parameter		Carbon		
Parameter Equation Equation Stum of operator, supervisor, maintenance labor Plus maintenance S7,181	Direct Annual Costs (DAC) =		\$13,432	in 2022 dollars
Parameter Equation Equatio	·			
= 60% of sum of operator, supervisor, maintenance S7,181 S7,181 S7,181 S6,746 S6,747 S6		F	01	
Overhead materials \$7,181 Administrative Charges = 2% of TCI \$5,746 S6,746 S9,373 S1,373 S1,	rarameter	•	Cost	
Administrative Charges = 2% of TCI	Overhead	· · · · · ·	ć7 101	
Property Taxes				
Insurance $= 1\%$ of TCI $= CRF_{Adorber} \times (TCI - [(1.08 \times CC \times M_c) + (IR \times M_c/CRR)] = S3,373$ S36,823 S76,823 S76,				
Capital Recovery $= CRF_{Adisorbett} \times (TCI - [(1.08 \times CC \times M_{\odot}) + (LR \times M_{\odot}/CRR)] = $35,823$ Indirect Annual Costs (IAC) = \$57,494 in 2022 dollars Recovered Solvent Credit/Disposal Costs Disposal Cost Parameter				
Indirect Annual Costs (IAC) = \$57,494 in 2022 dollars Recovered Solvent Credit/Disposal Costs Disposal Cost Parameter Equation Cost Solvent Costs (Disposal Cost) = $m_{voc} \times \theta_s \times D_{voc} \times E =$ \$0 VOC Disposal/Treatment Costs (Disposal Cost) = $m_{voc} \times \theta_s \times D_{voc} \times E =$ \$0 VOC Recovery Credit Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$2,576 Total Annual Cost (TAC) = DAC + IAC + C + Disposal Cost - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Cost Effectiveness Annual Quantity of VOC Removed/Recovered = $m_{voc} \times \theta_s \times E =$ \$68,351 per year in 2022 dollars 3.90 tons/year				
Recovered Solvent Credit/Disposal Cost Disposal Cost Parameter	Capital Recovery	= $CRF_{Adsorber} \times (TCI - [(1.08 \times CC \times M_c) + (LR \times M_c/CRR)] =$	\$36,823	
Disposal Cost Parameter Equation Cost VOC Disposal/Treatment Costs (Disposal cost) = $m_{voc} \times \theta_s \times D_{voc} \times E =$ SO VOC Recovery Credit Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ Total Annual Cost (TAC) = DAC + IAC + C + Disposal Cost - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Cost Effectiveness Total Annual Cost = Equation Cost Annual Cost = Final Cost Cost Annual Cost = Final Cost Annual Cost	Indirect Annual Costs (IAC) =		\$57,494	in 2022 dollars
Parameter Equation Cost VOC Disposal/Treatment Costs (Disposal $_{cost}$) = $m_{voc} \times \theta_s \times D_{voc} \times E =$ \$0 VOC Recovery Credit Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$2,576 Total Annual Cost (TAC) = DAC + IAC + C + Disposal $_{cost}$ - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Parameter Equation Cost S68,351 per year in 2022 dollars Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $w_{voc} \times \theta_s \times E =$ 3.90 tons/year	Recovered Solvent Credit/Disposal Costs			
Parameter Equation Cost VOC Disposal/Treatment Costs (Disposal $_{cost}$) = $m_{voc} \times \theta_s \times D_{voc} \times E =$ \$0 VOC Recovery Credit Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$2,576 Total Annual Cost (TAC) = DAC + IAC + C + Disposal $_{cost}$ - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Parameter Equation Cost S68,351 per year in 2022 dollars Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $w_{voc} \times \theta_s \times E =$ 3.90 tons/year	Disposal Cost			
VOC Recovery Credit Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$2,576 Total Annual Cost (TAC) = DAC + IAC + C + Disposal_{cost} - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Parameter Equation Cost TAC = \$68,351 per year in 2022 dollars Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} \times \theta_s \times E =$ 3.90 tons/year	•	Equation	Cost	
Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Cost Effectiveness Farameter Equation Cost Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} \times \theta_s \times E =$ 3.90 tons/year	VOC Disposal/Treatment Costs (Disposal cost)	$= m_{voc} \times \Theta_s \times D_{voc} \times E =$	\$0	
Parameter Equation Cost Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Cost Effectiveness Farameter Equation Cost Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} \times \theta_s \times E =$ 3.90 tons/year				
Annual Recovery Credit for Condensate (RC) = $m_{voc} \times \theta_s \times P_{voc} \times E =$ \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Parameter Equation Cost Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} \times \theta_s \times E =$ 3.90 tons/year				
Total Annual Cost (TAC) = DAC + IAC + C + Disposal_{cost} - RC = \$68,351 in 2022 dollars Cost Effectiveness Cost Effectiveness Parameter Equation Cost TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \theta_s \times E =$ 3.90 tons/year	Parameter	•	Cost	
Cost Effectiveness Cost Effectiveness Parameter Equation Cost Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \theta_s \times E =$ 3.90 tons/year	Annual Recovery Credit for Condensate (RC)	$= m_{voc} \times \Theta_s \times P_{voc} \times E =$	\$2,576	
Cost Effectiveness Parameter Equation Cost TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \theta_s \times E =$ 3.90 tons/year	Total Annual Cost (TAC) =	DAC + IAC + C + Disposal _{Cost} - RC =	\$68,351	in 2022 dollars
ParameterEquationCostTotal Annual Cost =TAC =\$68,351per year in 2022 dollarsAnnual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \Theta_s \times E =$ 3.90tons/year		Cost Effectiveness		
Parameter Equation Cost Total Annual Cost = TAC = \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \theta_s \times E =$ 3.90 tons/year	Cost Effectiveness			
Total Annual Cost = $TAC =$ \$68,351 per year in 2022 dollars Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \Theta_s \times E =$ 3.90 tons/year		Equation	Cost	
Annual Quantity of VOC Removed/Recovered = $W_{voc} = m_{voc} \times \Theta_s \times E =$ 3.90 tons/year				per year in 2022 dollars
	Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$17,512.48	per ton of pollutants removed/recovered in 2022 dollars

Attachment C Detailed Cost Calculation for Thermal Oxidizers

Data Inputs

Select the type of oxidizer

Regenerative Thermal Oxidizer

Enter the following information for your emission source:

	Com	position of Inlet Ga	s Stream		
Pollutant Name		Concentration (ppmv)	Lower Explosive Limit (LEL) (ppmv)*	Heat of Combustion (Btu/scf)	Molecular Weight
Toluene		59	11,000	4,274	92.13

Note: The lower explosion limit (LEL), heat of combustion and molecular weight for some commonly used VOC/HAP are provided in the table below.

Enter the design data for the proposed oxidizer:

Number of operating hours/year Inlet volumetric flow rate(Q_{wi}) at $77^{\circ}F$ and 1 atm. Inlet volumetric flow rate(Q_{wi}) (actual conditions) Pressure drop (ΔP) Motor/Fan Efficiency (ϵ) Inlet Waste Gas Temperature (T_{wi}) Operating Temperature (T_{fi}) Destruction and Removal Efficiency (DRE) Estimated Equipment Life Heat Loss (η)

2,080	hours/year	Percent Energy Recovery (HR) = 70 percent ▼
20,000	scfm*	20,000 scfm is a default volumetric flow rate. User should enter actual value, if known.
20,900	acfm*	20,900 acfm is a default volumetric flow rate. User should enter actual value, if known.
19	inches of water	23 inches of water is the default pressure drop for thermal oxidizers; 19 inches of water is the default pressure drop for catalytic oxidizers. Enter actual value, if known.
60	percent*	* 60% is a default fan efficiency. User should enter actual value, if known.
77	°F	
1,900	°F	Note: Default value for Tfi is 2000°F for thermal regenerative oxidizers. Use actual value if known. Tfi for regenerative oxidizers typically between 1800 and 2000°F.
98.5	percent	
20	Years*	20 years is the typical equipment life. User should enter actual value, if known.
1	percent*	1 percent is a default value for the heat loss. User should enter actual value, if known. Heat loss is typically between 0.2 and 1.5%.

Enter the cost data:

Desired dollar-year
CPI for 2022
Annual Interest Rate (i)
Electricity (Cost_{elect})
Natural Gas Fuel Cost (Cost_{fuel})
Operator Labor Rate
Maintenance Labor rate
Contingency Factor (CF)

2022			
317.299	Enter the CPI value for Oct. 2022	247.705	2016 CPI
7	Percent		
0.1124			
0.0146	\$/scf		
	per hour		
	per hour		
10.0	Percent		

* 10 percent is a default value for construction contingencies. User may enter values between 5 and 15 percent.

Cost Estimate

	Direct Costs	
	Total Purchased equipment costs (in 2022 dollars)	
Incinerator + auxiliary equipment ^a (A) =		
Equipment Costs (EC) for Regenerative Oxidizer	=[2.664 x 100,000 + (13.98 x Qtot)] x (2022 CEPI/2016 CEPCI) =	\$700,103 in 2022 dollars
Instrumentation ^b =	0.10 × A =	\$70,010
Sales taxes =	0.03 × A =	\$21,003
Freight =	0.05 × A =	\$35,005
	Total Purchased equipment costs (B) =	\$826,122 in 2022 dollars
<u>Footnotes</u>		
a - Auxiliary equipment includes equipment (e.g., duct work) no		
b - Includes the instrumentation and controls furnished by the i	ncinerator vendor.	
	Direct Installation Costs (in 2022 dollars)	
Foundations and Supports =	0.08 × B =	\$66,090
Handlong and Errection =	0.14 × B =	\$115,657
Electrical =	0.04 × B =	\$33,045
Piping =	0.02 × B =	\$16,522
Insulation for Ductwork =	0.01 × B =	\$8,261
Painting =	0.01 × B =	\$8,261
Site Preparation (SP) =		\$0
Buildings (Bldg) =	Total Dissat Installaton Costs	\$0
T	Total Direct Installaton Costs =	\$247,837
Total Direct Costs (DC) =	Total Purchase Equipment Costs (B) + Total Direct Installation Costs =	\$1,073,958 in 2022 dollars
	Total Indirect Installation Costs (in 2022 dollars)	
	Total mullect installation costs (in 2022 dollars)	
Engineering =	0.10 × B =	\$82,612
Construction and field expenses =	0.05 × B =	\$41,306
Contractor fees =	0.10 × B =	\$82,612
Start-up =	0.02 × B =	\$16,522
Performance test =	0.01 × B =	\$8,261
	Total Indirect Costs (IC) =	\$231,314
Continency Cost (C) =	CF(IC+DC)=	\$130,527
Total Capital Investment =	DC + IC +C =	\$1,435,800 in 2022 dollars

	Direct Annual Costs		
Annual Electricity Cost	= Fan Power Consumption × Operating Hours/year × Electricity Price =	\$18,104	
Annual Fuel Costs for Natural Gas	= Cost _{fuel} × Fuel Usage Rate × 60 min/hr × Operating hours/year	\$71,403	
		4	
Operating Labor	Operator = 0.5hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$3,572	
	Supervisor = 15% of Operator	\$536	
Maintenance Costs	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$3,930	
	Materials = 100% of maintenance labor	\$3,930	
Direct Annual Costs (DC) =		\$101,474 in 2022 dollars	
	Indirect Annual Costs		
	maneet Annaar Costs		
	= 60% of sum of operating, supervisor, maintenance labor and maintenance		
Overhead	materials	\$7,181	
Administrative Charges	= 2% of TCI	\$28,716	
Property Taxes	= 1% of TCI	\$14,358	
	- 1/0 OF TCT	714,338	

Indirect Annual Costs (IC) =	\$200,142 in 2022 dollars
mancet Amad Costs (IC) -	7200,172 III 2022 dollars

= CRF[TCI-1.08(cat. Cost)]

Capital Recovery

Total Annual Cost = DC + IC = \$301,617 in 2022 dollars

Cost Effectiveness

\$135,529

Cost Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HAP Pollutants Destroyed)

Total Annual Cost (TAC) =	\$301,617 per year in 2022 dollars
VOC/HAP Pollutants Destroyed =	17.200 tons/year
Cost Effectiveness =	\$17,535 per ton of pollutants removed in 2022 dollars